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Abstract. This paper presents a new robust loss function, the T-Loss,
for medical image segmentation. The proposed loss is based on the nega-
tive log-likelihood of the Student-t distribution and can effectively handle
outliers in the data by controlling its sensitivity with a single parameter.
This parameter is updated during the backpropagation process, elimi-
nating the need for additional computation or prior information about
the level and spread of noisy labels. Our experiments show that the T-
Loss outperforms traditional loss functions in terms of dice scores on
two public medical datasets for skin lesion and lung segmentation. We
also demonstrate the ability of T-Loss to handle different types of sim-
ulated label noise, resembling human error. Our results provide strong
evidence that the T-Loss is a promising alternative for medical image
segmentation where high levels of noise or outliers in the dataset are a
typical phenomenon in practice. The project website can be found at
https://robust-tloss.github.io.
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1 Introduction

Convolutional Neural Networks (CNNs) and Visual Transformers (ViTs) have
become the standard in semantic segmentation, achieving state-of-the-art results
in many applications [1, 24, 16]. However, supervised training of CNNs and
ViTs requires large amounts of annotated data, where each pixel in the image
is labeled with the category it belongs to. In the medical domain, obtaining
these annotations can be costly and time-consuming as it requires expertise and
domain knowledge that is often scarcely available [6]. In addition, medical image
annotations can be affected by human bias and poor inter-annotator agreement
[23], further complicating the process. Despite efforts to obtain labels through
automated mining [31] and crowd-sourcing methods [11], the quality of datasets
gathered using these methods remains challenging due to often high levels of
label noise.

For instance, the Fitzpatrick 17k dataset, commonly used in dermatology
research, contains non-skin images and noisy annotations. In a random sample
of 504 images, 5.4% were labeled incorrectly or as other classes [10]. The dataset
was scraped from online atlases, which makes it vulnerable to inaccuracies and
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noise [10]. Noisy labels are and will continue to be, a problem in medical datasets.
This is a concern as label noise has been shown to decrease the accuracy of
supervised models [20, 22, 35], making it a key area of focus for both research
and practical applications.

Previous literature has explored many methods to mitigate the problem of
noisy labels in deep learning. These methods can be broadly categorized into
label correction [27, 28, 32], loss function correction based on an estimated noise
transition matrix [21, 33, 29], and robust loss functions [34, 30, 2, 18]. Compared
to the first two approaches, which may suffer from inaccurate estimates of the
noise transition matrix, robust loss functions enable joint optimization of model
parameters and variables related to the noise model and have shown promising
results in classification tasks [8, 34]. Despite these advances, semantic segmen-
tation with noisy labels is relatively understudied. Existing research in this area
has focused on the development of noise-resistant network architectures [15], the
incorporation of domain-specific prior knowledge [29], or more recent strategies
that update the noisy masks before memorization [17].

Although previous methods have shown robustness in semantic segmentation,
they often have limitations, such as more hyper-parameters, modifications to the
network architecture, or complex training procedures. In contrast, robust loss
functions offer a much simpler solution as they could be incorporated with a
simple change in a single modeling component. However, their effectiveness has
not been thoroughly investigated.

In this work, we show that several traditional robust loss functions are vul-
nerable to memorizing noisy labels. To overcome this problem, we introduce a
novel robust loss function, the T-Loss, which is inspired by the negative log-
likelihood of the Student-t distribution. The T-Loss, whose simplest formulation
features a single parameter, can adaptively learn an optimal tolerance level to
label noise directly during backpropagation, eliminating the need for additional
computations such as the Expectation Maximization (EM) steps.

To evaluate the effectiveness of the T-Loss as a robust loss function for medi-
cal semantic segmentation, we conducted experiments on two widely-used bench-
mark datasets in the field: one for skin lesion segmentation and the other for lung
segmentation. We injected different levels of noise into these datasets that simu-
late typical human labeling errors and trained deep learning models using various
robust loss functions. Our experiments demonstrate that the T-Loss outperforms
these robust state-of-the-art loss functions in terms of segmentation accuracy and
robustness, particularly under conditions of high noise contamination. We also
observed that the T-Loss could adaptively learn the optimal tolerance level to
label noise which significantly reduces the risk of memorizing noisy labels.

This research is divided as follows: Section 2 introduces the motivation be-
hind our T-Loss and provides its mathematical derivation. Section 3 covers the
datasets used in our experiments, the implementation and training details of
T-Loss, and the metrics used for comparison. Section 4 presents the main find-
ings of our study, including the results of the T-Loss and the baselines on both
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datasets and an ablation study on the parameter of T-Loss. Finally, in section 5,
we summarize our contributions and the significance of our study for the field.

2 Methodology

Let xi ∈ Rc×w×h be an input image and yi ∈ {0, 1}w×h be its noisy annotated
binary segmentation mask, where c represents the number of channels, w the
image’s width, and h its height. Given a set of images {x1, . . . ,xN} and corre-
sponding masks {y1, . . . ,yN}, our goal is to train a model fw with parameters
w such that fw(x) approximates the accurate binary segmentation mask for any
given image x.

To this end we note that, heuristically, assuming error terms to follow a
Student-t distribution (as suggested e.g. in [19]) allows for significantly larger
noise tolerance with respect to the usual gaussian form. Recall that the Student-t
distribution for a D-dimensional variable y is defined by the Probability Density
Function (PDF)
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where µ and Σ are respectively the mean and the covariance matrix of the asso-
ciated multivariate normal distribution, ν is the number of degrees of freedom,
and | · | indicates the determinant (see e.g. [3]). From this expression, we see that
the tails of the Student-t distribution follow a power law that is indeed heavier
compared to the usual negative quadratic exponential. For this reason, it is well
known to be robust to outliers [26, 7].

Since the common Mean Squared Error (MSE) loss is derived by minimizing
the negative log-likelihood of the normal distribution, we choose to apply the
same transformation and get
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The functional form of our loss function for one image is then obtained with the
identification y = yi and the approximation µ = fw(xi), and aggregated with

LT =
1

N

N∑
i=1

− log p(yi|fw(xi),Σ; ν). (3)

Equation (2) has D(D+1)/2 free parameters in the covariance matrix, which
should be estimated from the data. In the case of images, this can easily be in the
order of 104 or larger, which makes a general computation highly non-trivial and
may deteriorate the generalization capabilities of the model. For these reasons,
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we take Σ to be the identity matrix ID, despite knowing that pixel annotations
in an image are not independent. The loss term for one image simplifies to
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To clarify the relation with known loss functions, let δ = |yi−fw(xi)|, and fix
the value of ν. For δ → 0, the functional dependence from δ reduces to a linear
function of δ2, i.e. MSE. For large values of δ, though, eq. (4) is equivalent to
log δ, thus penalizing large deviations even less than the much-advocated robust
Mean Absolute Error (MAE). The scale of this transition, the sensitivity to
outliers, is regulated by the parameter ν.

We optimize the parameter ν jointly with w using gradient descent. To this
end, we reparametrize ν = eν̃ + ϵ where ϵ is a safeguard for numerical stability.
Loss functions with similar dynamic tolerance parameters were also studied in
[2] in the context of regression, where using the Student-t distribution is only
mentioned in passing.

3 Experiments

In this section, we demonstrate the robustness of the T-Loss for segmentation
tasks on two public image collections from different medical modalities, namely
ISIC [5] and Shenzhen [4, 13, 25]. In line with the literature, we use simulated
label noise in our tests, as no public benchmark with real label noise exists [15].

3.1 Datasets

The ISIC 2017 dataset [5] is a well-known public benchmark of dermoscopy
images for skin cancer detection. It contains 2000 training and 600 test images
with corresponding lesion boundary masks. The images are annotated with lesion
type, diagnosis, and anatomical location metadata. The dataset also includes a
list of lesion attributes, such as size, shape, and color. We resized the images to
256× 256 pixels for our experiments.

Shenzhen [4, 13, 25] is a public dataset containing 566 frontal chest radio-
graphs with corresponding lung segmentation masks for tuberculosis detection.
Since there is not a predefined split for Shenzhen as in ISIC, to ensure represen-
tative training and testing sets, we stratified the images by their tuberculosis and
normal lung labels, with 70% of the data for training and the remaining 30% for
testing. Resulting in 296 training images and 170 test images. All images were
resized to 256× 256 pixels.

Without a public benchmark with real noisy and clean segmentation masks,
we artificially inject additional mask noise in these two datasets to test the
model’s robustness to low annotation quality. This simulates the real risk of
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errors due to factors like annotator fatigue and difficulty in annotating certain
images. In particular, we follow [15], randomly sample a portion of the training
data with probability α ∈ {0.3, 0.5, 0.7}, and apply morphological transforma-
tions with noise levels controlled by β ∈ {0.5, 0.7}. The morphological transfor-
mations included erosion, dilation, and affine transformations, which respectively
reduced, enlarged, and displaced the annotated area.

3.2 Setup

We train a nnU–Net [12] as a segmentation network from scratch. To increase
variations in the training data, we augment them with random mirroring, flip-
ping, and gamma transformations. The T-loss was initialized with ν̃ = 0 and
ϵ = 10−8. The nnU-Net was trained for 100 epochs using the Adam optimizer
with a learning rate of 10−3 and a batch size of 16 for the ISIC dataset and 8
for the Shenzhen dataset. The network was trained on a single NVIDIA Tesla
V100 with 32 GB of memory.

The model is trained using noisy masks. However, by using the ground truth
for the corresponding noisy mask, we can evaluate the robustness of the model
and measure noisy-label memorization. This is done by analyzing the dice score
of the model’s prediction compared to the actual ground truth.

In addition to the T-Loss, we train several other losses for comparison. Our
analysis includes some traditional robust losses, such as Mean Absolute Error
(MAE), Reverse Cross Entropy (RCE), Normalized Cross Entropy (NCE), and
Normalized Generalized Cross Entropy (NGCE), as well as more recent meth-
ods, such as Generalized Cross Entropy (GCE) [34], Symmetrical Cross Entropy
(SCE) [30], and Active-Passive Loss (APL) [18]. For APL, in particular, we con-
sider three combinations: 1) NCE+RCE, 2) NGCE+MAE, and 3) NGCE+RCE.
We consider the mean of the predictions for the last 10 epochs with a fixed num-
ber of epochs and report its mean and standard deviation over 3 different random
seeds.

Finally, we complete our evaluation with statistical significance tests. We
use the ANOVA test [9] to compare the differences between the means of the
dice scores and obtain a p-value. In addition, if the difference is significant, we
perform the Tukey post-hoc test [14] to determine which means are different. We
assume statistical significance for p-values of less than p = 0.05 and denote this
with a ⋆.

4 Results

4.1 Results on the ISIC dataset

We present experimental results for the skin lesion segmentation task on the ISIC
dataset in table 1. Our results show that conventional losses perform well with
no noise or under low noise levels, but their performance decreases significantly
with increasing noise levels due to the memorization of noisy labels. This can
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be observed from the training dice scores in fig. 1, where traditional robust
losses overfit data in later stages of learning while metrics for the T-Loss do not
deteriorate. Our method achieves a dice score of 0.788± 0.007 even for the most
extreme noise scenario under exam. Examples of the obtained masks can be seen
in the supplementary material.

Table 1. Dice score on the ISIC dataset with different noise ratios. The values refer
to the mean and standard deviation over 3 different random seeds for the mean score
over the last 10 epochs.

Loss α = 0.0
α = 0.3 α = 0.5 α = 0.7

β = 0.5 β = 0.7 β = 0.5 β = 0.7 β = 0.5 β = 0.7

GCE 0.828(7) 0.805(9) 0.785(14) 0.772(15) 0.736(17) 0.743(12) 0.691(22)
MAE 0.826(6) 0.803(7) 0.786(12) 0.771(10) 0.742(14) 0.751(09) 0.698(20)
RCE 0.827(5) 0.802(6) 0.791(11) 0.779(11) 0.745(17) 0.752(10) 0.695(16)
SCE 0.828(6) 0.806(9) 0.793(11) 0.774(12) 0.738(14) 0.756(10) 0.691(20)
NGCE 0.825(6) 0.803(7) 0.788(08) 0.773(11) 0.745(16) 0.745(11) 0.688(19)

NCE+RCE 0.829(6) 0.799(8) 0.792(12) 0.777(11) 0.751(18) 0.746(11) 0.696(13)
NGCE+MAE 0.828(5) 0.802(8) 0.788(13) 0.774(10) 0.741(18) 0.748(11) 0.693(15)
NGCE+RCE 0.827(7) 0.807(7) 0.790(11) 0.776(13) 0.736(17) 0.748(10) 0.689(17)

T-Loss (Ours) 0.825(5) 0.809(6) 0.804(5)⋆ 0.800(11)⋆ 0.790(5)⋆ 0.788(7)⋆ 0.761(6)⋆
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Fig. 1. The dice score of training set predictions compared to ground truth annotations
during the training process on the ISIC 2017 dataset for each type of noisy mask with
α = 0.7, β = 0.7. The model memorizes the noisy labels after the first ∼20K iterations,
thus negatively affecting the dice score for all losses except the T-Loss.

4.2 Results on the Shenzhen dataset

The results of lung segmentation for the Shenzhen test set are reported in table 2.
Similar to the ISIC dataset, all considered robust losses perform well at low noise
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Fig. 2. The behavior of ν̃ in the skin lesion segmentation task. Left: convergence of ν̃
with different levels of label noise. Center: sensitivity of ν̃ to initialization for α = 0.7,
β = 0.7. Right: sensitivity of the dice score to the initialization of ν̃ with the same
settings.

levels. However, as the noise level increases, their dice scores deteriorate. On the
other hand, the T-Loss stands out by consistently achieving the highest dice
score, even in the most challenging scenarios. The statistical test results also
support this claim, with the T-Loss being significantly superior to the other
methods.

Table 2. Dice score on the Shenzhen dataset with different noise ratios. The values
refer to the mean and standard deviation over 3 different random seeds for the mean
score over the last 10 epochs.

Loss α = 0.0
α = 0.3 α = 0.5 α = 0.7

β = 0.5 β = 0.7 β = 0.5 β = 0.7 β = 0.5 β = 0.7

GCE 0.948(1) 0.933(6) 0.930(8) 0.909(12) 0.880(19) 0.856(14) 0.807(23)
MAE 0.949(2) 0.937(6) 0.931(8) 0.910(11) 0.880(16) 0.864(20) 0.823(23)
RCE 0.949(2) 0.938(4) 0.931(8) 0.910(10) 0.886(20) 0.863(15) 0.818(26)
SCE 0.949(3) 0.938(4) 0.930(6) 0.908(09) 0.881(18) 0.865(15) 0.821(24)
NGCE 0.949(2) 0.936(7) 0.933(9) 0.906(12) 0.875(23) 0.865(17) 0.822(24)

NCE+RCE 0.949(2) 0.936(7) 0.928(9) 0.906(12) 0.879(18) 0.863(18) 0.818(23)
NGCE+MAE 0.949(1) 0.938(5) 0.934(6) 0.906(11) 0.877(19) 0.865(16) 0.824(21)
NGCE+RCE 0.949(2) 0.936(5) 0.930(10) 0.909(10) 0.884(17) 0.862(12) 0.821(26)

T-Loss (Ours) 0.949(1) 0.948(1)⋆ 0.939(1)⋆ 0.914(5)⋆ 0.904(8)⋆ 0.896(7)⋆ 0.870(31)⋆

4.3 Dynamic tolerance to noise

The value of ν̃ is crucial for the model’s performance, as it controls the sensitivity
to label noise. To shed light on this mechanism, we study the behavior of ν̃ during
training for different label noise levels and initializations on the ISIC dataset.
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As seen in fig. 2, ν̃ dynamically adjusts annotation noise tolerance in the early
stages of training, independently of its initial value. The plots demonstrate that
ν̃ clearly converges to a stable solution during training, with initializations far
from this solution only mildly prolonging the time needed for convergence and
having no significant effect on the final dice score.

5 Conclusions

In this contribution, we introduced the T-Loss, a loss function based on the
negative log-likelihood of the Student-t distribution. The T-Loss offers the great
advantage of controlling sensitivity to outliers through a single parameter that
is dynamically optimized. Our evaluation on public medical datasets for skin
lesion and lung segmentation demonstrates that the T-Loss outperforms other
robust losses by a statistically significant margin. While other robust losses are
vulnerable to noise memorization for high noise levels, the T-Loss can reabsorb
this form of overfitting into the tolerance level ν. Our loss function also features
remarkable independence to different noise types and levels.

It should be noted that other methods, such as [15] offer better performance
for segmentation on the ISIC dataset with the same synthetic noisy labels, while
the T-Loss offers a simple alternative. The trade-off in terms of performance,
computational cost, and ease of adaption to different scenarios remains to be
investigated. Similarly, combinations of the T-Loss with superpixels and/or it-
erative label refinement procedures are still to be explored.

The T-Loss provides a robust solution for binary segmentation of medical
images in the presence of high levels of annotation noise, as frequently met in
practice e.g. due to annotator fatigue or inter-annotator disagreements. This may
be a key feature in achieving good generalization in many medical image segmen-
tation applications, such as clinical decision support systems. Our evaluations
and analyses provide evidence that the T-Loss is a reliable and valuable tool in
the field of medical image analysis, with the potential for broader application in
other domains.

6 Data use declaration and acknowledgment
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